两点组并列连接在电路中称为并联电阻,另外由单纯的并联电阻或用电器(用电器:如,电视机,空调,电脑等)构成的电路称为并联电路。对比于第二个电路,电阻(用电器),依次连接起来的为串联电路。
在平面上任取一点O,用相互交角为120°的三矢量作为坐标轴OX、OY、OZ(每轴均可向负向延伸),若要求R1、R2的并联电阻,只要在OX轴上取OA长等于R1的值,在OY轴上取OB长等于R2值,连结AB,交OZ轴(负向)于C点,则OC长度(绝对值)即为所求并联电阻阻值.
证明 面积S△AOB=S△AOC+S△BOC
即 (1/2)AO×BO×Sin120°
=(1/2)AO×OC×Sin60°+(1/2)BO×OC×Sin60°AO×BO =AO×OC+BO×OCR1R2=R1R+R2R
∴ R=R1R2/(R1+R2)
应用 可方便地连续求解多个电阻的并联值。例如,若要求R1、R2、R3的并联总阻的阻值,只需先求出R1、R2并联后的阻值R12(即得到C点),再在OA的负向取一点D,快OD长等于R3的值,连结CD交OY轴于E点,则OE长即为R1、R2、R3的并联总阻的阻值,如图3。如R1=4Ω,R2=12Ω,R3=6Ω,按此法可求出R12=3Ω;R1、R2、R3三电阻并联电阻值为2Ω。
以上求解方法对于求电容器串联、弹簧串联,凸透镜成象等与电阻并联有相似计算公式的问题,同样适用